library(tidyverse)
 Attaching packages  tidyverse 1.3.0

 ggplot2 3.3.3      purrr   0.3.4
 tibble  3.0.6      dplyr   1.0.4
 tidyr   1.1.2      stringr 1.4.0
 readr   1.4.0      forcats 0.5.1

 Conflicts  tidyverse_conflicts() 
 dplyr::filter() masks stats::filter()
 dplyr::lag()    masks stats::lag()
raw_arabica <- read_csv("https://raw.githubusercontent.com/jldbc/coffee-quality-database/master/data/arabica_data_cleaned.csv") 
raw_robusta <- read_csv("https://raw.githubusercontent.com/jldbc/coffee-quality-database/master/data/robusta_data_cleaned.csv")
Warning message:
Missing column names filled in: 'X1' [1]

olumn specification cols( .default = col_character(), X1 = col_double(), Number.of.Bags = col_double(), Aroma = col_double(), Flavor = col_double(), Aftertaste = col_double(), Acidity = col_double(), Body = col_double(), Balance = col_double(), Uniformity = col_double(), Clean.Cup = col_double(), Sweetness = col_double(), Cupper.Points = col_double(), Total.Cup.Points = col_double(), Moisture = col_double(), Category.One.Defects = col_double(), Quakers = col_double(), Category.Two.Defects = col_double(), altitude_low_meters = 2mcol_double(), altitude_high_meters = col_double(), altitude_mean_meters = col_double() ) ℹ Use spec() for the full column specifications.

Warning message:
Missing column names filled in: 'X1' [1]

 Column specification 
cols(
  .default = col_character(),
  X1 = col_double(),
  Number.of.Bags = col_double(),
  Harvest.Year = col_double(),
  Fragrance...Aroma = col_double(),
  Flavor = col_double(),
  Aftertaste = col_double(),
  Salt...Acid = col_double(),
  Bitter...Sweet = col_double(),
  Mouthfeel = col_double(),
  Uniform.Cup = mcol_double(),
  Clean.Cup = col_double(),
  Balance = col_double(),
  Cupper.Points = col_double(),
  Total.Cup.Points = col_double(),
  Moisture = col_double(),
  Category.One.Defects = col_double(),
  Quakers = col_double(),
  Category.Two.Defects = col_double(),
  altitude_low_meters = col_double(),
  altitude_high_meters = col_double()
  # ... with 1 more columns
)Use `spec()` for the full column specifications.
head(raw_arabica)
A tibble: 6 44
X1SpeciesOwnerCountry.of.OriginFarm.NameLot.NumberMillICO.NumberCompanyAltitudeColorCategory.Two.DefectsExpirationCertification.BodyCertification.AddressCertification.Contactunit_of_measurementaltitude_low_metersaltitude_high_metersaltitude_mean_meters
<dbl><chr><chr><chr><chr><chr><chr><chr><chr><chr><chr><dbl><chr><chr><chr><chr><chr><dbl><dbl><dbl>
1Arabicametad plc Ethiopia metad plc NAmetad plc2014/2015metad agricultural developmet plc 1950-2200 Green 0April 3rd, 2016 METAD Agricultural Development plc309fcf77415a3661ae83e027f7e5f05dad786e4419fef5a731de2db57d16da10287413f5f99bc2ddm195022002075
2Arabicametad plc Ethiopia metad plc NAmetad plc2014/2015metad agricultural developmet plc 1950-2200 Green 1April 3rd, 2016 METAD Agricultural Development plc309fcf77415a3661ae83e027f7e5f05dad786e4419fef5a731de2db57d16da10287413f5f99bc2ddm195022002075
3Arabicagrounds for health adminGuatemalasan marcos barrancas “san cristobal cuchNANA NA NA 1600 - 1800 mNA 0May 31st, 2011 Specialty Coffee Association 36d0d00a3724338ba7937c52a378d085f2172daa0878a7d4b9d35ddbf0fe2ce69a2062cceb45a660m160018001700
4Arabicayidnekachew dabessa Ethiopia yidnekachew dabessa coffee plantation NAwolensu NA yidnekachew debessa coffee plantation1800-2200 Green 2March 25th, 2016 METAD Agricultural Development plc309fcf77415a3661ae83e027f7e5f05dad786e4419fef5a731de2db57d16da10287413f5f99bc2ddm180022002000
5Arabicametad plc Ethiopia metad plc NAmetad plc2014/2015metad agricultural developmet plc 1950-2200 Green 2April 3rd, 2016 METAD Agricultural Development plc309fcf77415a3661ae83e027f7e5f05dad786e4419fef5a731de2db57d16da10287413f5f99bc2ddm195022002075
6Arabicaji-ae ahn Brazil NA NANA NA NA NA Bluish-Green1September 3rd, 2014Specialty Coffee Institute of Asia726e4891cf2c9a4848768bd34b668124d12c4224b70da261fcc84831e3e9620c30a8701540abc200m NA NA NA
colnames(raw_arabica)
colnames(raw_robusta)
  1. X1’
  2. Species’
  3. Owner’
  4. Country.of.Origin’
  5. Farm.Name’
  6. Lot.Number’
  7. Mill’
  8. ICO.Number’
  9. Company’
  10. Altitude’
  11. Region’
  12. Producer’
  13. Number.of.Bags’
  14. Bag.Weight’
  15. In.Country.Partner’
  16. Harvest.Year’
  17. Grading.Date’
  18. Owner.1’
  19. Variety’
  20. Processing.Method’
  21. Aroma’
  22. Flavor’
  23. Aftertaste’
  24. Acidity’
  25. Body’
  26. Balance’
  27. Uniformity’
  28. Clean.Cup’
  29. Sweetness’
  30. Cupper.Points’
  31. Total.Cup.Points’
  32. Moisture’
  33. Category.One.Defects’
  34. Quakers’
  35. Color’
  36. Category.Two.Defects’
  37. Expiration’
  38. Certification.Body’
  39. Certification.Address’
  40. Certification.Contact’
  41. unit_of_measurement’
  42. altitude_low_meters’
  43. altitude_high_meters’
  44. altitude_mean_meters’
  1. X1’
  2. Species’
  3. Owner’
  4. Country.of.Origin’
  5. Farm.Name’
  6. Lot.Number’
  7. Mill’
  8. ICO.Number’
  9. Company’
  10. Altitude’
  11. Region’
  12. Producer’
  13. Number.of.Bags’
  14. Bag.Weight’
  15. In.Country.Partner’
  16. Harvest.Year’
  17. Grading.Date’
  18. Owner.1’
  19. Variety’
  20. Processing.Method’
  21. Fragrance…Aroma’
  22. Flavor’
  23. Aftertaste’
  24. Salt…Acid’
  25. Bitter…Sweet’
  26. Mouthfeel’
  27. Uniform.Cup’
  28. Clean.Cup’
  29. Balance’
  30. Cupper.Points’
  31. Total.Cup.Points’
  32. Moisture’
  33. Category.One.Defects’
  34. Quakers’
  35. Color’
  36. Category.Two.Defects’
  37. Expiration’
  38. Certification.Body’
  39. Certification.Address’
  40. Certification.Contact’
  41. unit_of_measurement’
  42. altitude_low_meters’
  43. altitude_high_meters’
  44. altitude_mean_meters’
install.packages("tidytuesdayR")
# Either ISO-8601 date or year/week works!

tuesdata <- tidytuesdayR::tt_load('2020-07-07')
tuesdata <- tidytuesdayR::tt_load(2020, week = 28)

coffee_ratings <- tuesdata$coffee_ratings
Installing package into /usr/local/lib/R/site-library
(as lib is unspecified)

--- Compiling #TidyTuesday Information for 2020-07-07 ----

--- There is 1 file available ---

--- Starting Download ---




    Downloading file 1 of 1: `coffee_ratings.csv`



--- Download complete ---

--- Compiling #TidyTuesday Information for 2020-07-07 ----

--- There is 1 file available ---

--- Starting Download ---




    Downloading file 1 of 1: `coffee_ratings.csv`



--- Download complete ---
??tidytuesdayR
R Information

Help files with alias or concept or title matching tidytuesdayR using
fuzzy matching:


tidytuesdayR::available
                        Listing all available TidyTuesdays
tidytuesdayR::tt_date   Get date of TidyTuesday, given the year and
                        week
tidytuesdayR::tt_download_file
                        Reads in TidyTuesday datasets from Github repo
tidytuesdayR::tt_load   Load TidyTuesday data from Github
tidytuesdayR::tt_load_gh
                        Load TidyTuesday data from Github


Type '?PKG::FOO' to inspect entries 'PKG::FOO', or 'TYPE?PKG::FOO' for
entries like 'PKG::FOO-TYPE'.
library(tidytuesdayR)
??tidytuesdayR
R Information

Help files with alias or concept or title matching tidytuesdayR using
fuzzy matching:


tidytuesdayR::available
                        Listing all available TidyTuesdays
tidytuesdayR::tt_date   Get date of TidyTuesday, given the year and
                        week
tidytuesdayR::tt_download_file
                        Reads in TidyTuesday datasets from Github repo
tidytuesdayR::tt_load   Load TidyTuesday data from Github
tidytuesdayR::tt_load_gh
                        Load TidyTuesday data from Github


Type '?PKG::FOO' to inspect entries 'PKG::FOO', or 'TYPE?PKG::FOO' for
entries like 'PKG::FOO-TYPE'.
tt_available()
Year: 2021

   Week       Date                           Data                      Source
1     1 2020-12-29 Bring your own data from 2020!                            
2     2 2021-01-05           Transit Cost Project            TransitCosts.com
3     3 2021-01-12                Art Collections             Tate Collection
4     4 2021-01-19                   Kenya Census                rKenyaCensus
5     5 2021-01-26              Plastic Pollution     Break Free from Plastic
6     6 2021-02-02                HBCU Enrollment     Data.World & Data.World
7     7 2021-02-09              Wealth and Income Urban Institute & US Census
8     8 2021-02-16       W.E.B. Du Bois Challenge      Du Bois Data Challenge
9     9 2021-02-23        Employment and Earnings                         BLS
10   10 2021-03-02                  SuperBowl Ads             FiveThirtyEight
11   11 2021-03-09                   Bechdel Test             FiveThirtyEight
12   12 2021-03-16           Video Games + Sliced                       Steam
13   13 2021-03-23                       UN Votes           Harvard Dataverse
14   14 2021-03-30                  Makeup Shades            The Pudding data
                                                Article
1                                                      
2                              Transit Costs Case Study
3                 Aspect Ratio of Artworks through Time
4                              Introducing rKenyaCensus
5                                           Sarah Sauve
6                                HBCU Donations Article
7                                       Urban Institute
8  Anthony Starks - Recreating Du Bois's data portraits
9                                           BLS Article
10                                      FiveThirtyEight
11                                      FiveThirtyEight
12                                          SteamCharts
13                                 Citizen Statistician
14                                          The Pudding


Year: 2020

   Week       Date                                Data
1     1 2019-12-31      Bring your own data from 2019!
2     2 2020-01-07                    Australian Fires
3     3 2020-01-14                           Passwords
4     4 2020-01-21                         Song Genres
5     5 2020-01-28                 San Francisco Trees
6     6 2020-02-04                      NFL Attendance
7     7 2020-02-11                      Hotel Bookings
8     8 2020-02-18             Food's Carbon Footprint
9     9 2020-02-25                 Measles Vaccination
10   10 2020-03-03                           NHL Goals
11   11 2020-03-10 College Tuition, Diversity, and Pay
12   12 2020-03-17                          The Office
13   13 2020-03-24              Traumatic Brain Injury
14   14 2020-03-31                     Beer Production
15   15 2020-04-07                      Tour de France
16   16 2020-04-14                    Best Rap Artists
17   17 2020-04-21                     GDPR Violations
18   18 2020-04-28                   Broadway Musicals
19   19 2020-05-05                     Animal Crossing
20   20 2020-05-12                   Volcano Eruptions
21   21 2020-05-19                    Beach Volleyball
22   22 2020-05-26                           Cocktails
23   23 2020-06-02                        Marble Races
24   24 2020-06-09       African-American Achievements
25   25 2020-06-16            African-American History
26   26 2020-06-23                   Caribou Locations
27   27 2020-06-30              Claremont Run of X-Men
28   28 2020-07-07                      Coffee Ratings
29   29 2020-07-14                  Astronaut Database
30   30 2020-07-21          Australian Animal Outcomes
31   31 2020-07-28                     Palmer Penguins
32   32 2020-08-04                     European Energy
33   33 2020-08-11          Avatar: The Last Airbender
34   34 2020-08-18                      Extinct Plants
35   35 2020-08-25                             Chopped
36   36 2020-09-01                  Global Crop Yields
37   37 2020-09-08                             Friends
38   38 2020-09-15                Gov Spending on Kids
39   39 2020-09-22                  Himalayan Climbers
40   40 2020-09-29       Beyonce & Taylor Swift Lyrics
41   41 2020-10-06             NCAA Women's Basketball
42   42 2020-10-13                    datasauRus dozen
43   43 2020-10-20   Great American Beer Festival Data
44   44 2020-10-27              Canadian Wind Turbines
45   45 2020-11-03                      Ikea Furniture
46   46 2020-11-10                   Historical Phones
47   47 2020-11-17                       Black in Data
48   48 2020-11-24                   Washington Trails
49   49 2020-12-01                    Toronto Shelters
50   50 2020-12-08                       Women of 2020
51   51 2020-12-15                       Ninja Warrior
52   52 2020-12-22                       Big Mac Index
                                   Source
1                                        
2                   Bureau of Meteorology
3                  Knowledge is Beautiful
4                                spotifyr
5                          data.sfgov.org
6                  Pro Football Reference
7       Antonio, Almeida, and Nunes, 2019
8                                     nu3
9                  The Wallstreet Journal
10                    HockeyReference.com
11                     TuitionTracker.org
12                                schrute
13                                    CDC
14                                    TTB
15                            tdf package
16                              BBC Music
17                        Privacy Affairs
18                               Playbill
19                            Villager DB
20                            Smithsonian
21                           BigTimeStats
22                        Kaggle & Kaggle
23                    Jelle's Marble Runs
24                  Wikipedia & Wikipedia
25    Black Past & Census & Slave Voyages
26                               Movebank
27                          Claremont Run
28 James LeDoux & Coffee Quality Database
29 Corlett, Stavnichuk & Komarova article
30                                  RSPCA
31      Gorman, Williams and Fraser, 2014
32                        Eurostat Energy
33                                   appa
34                          IUCN Red List
35                          Kaggle & IMDB
36                      Our World in Data
37                      friends R package
38                        Urban Institute
39                 The Himalayan Database
40      Rosie Baillie and Dr. Sara Stoudt
41                        FiveThirtyEight
42                          Alberto Cairo
43           Great American Beer Festival
44                         open.canada.ca
45                                 Kaggle
46       Mobile vs Landline subscriptions
47                     Black in Data Week
48                                    WTA
49                        opendatatoronto
50                                    BBC
51                             Data.World
52                           TheEconomist
                                                Article
1                                                      
2                                        NY Times & BBC
3                              Information is Beautiful
4                                         Kaylin Pavlik
5                                             SF Weekly
6                                            Casino.org
7                                             tidyverts
8                               r-tastic by Kasia Kulma
9                               The Wall Street Journal
10                                      Washington Post
11                                   TuitionTracker.org
12                                          The Pudding
13                    CDC Traumatic Brain Injury Report
14                                  Brewers Association
15                            Alastair Rushworth's blog
16                         Simon Jockers at Datawrapper
17                                      Roel Hogervorst
18                                         Alex Cookson
19                                              Polygon
20                                    Axios & Wikipedia
21                          FiveThirtyEight & Wikipedia
22                                      FiveThirtyEight
23                                          Randy Olson
24       David Blackwell & Petition for David Blackwell
25                                         The Guardian
26                         B.C. Ministry of Environment
27                            Wikipedia - Uncanny X-Men
28                               Yorgos Askalidis - TWD
29               Corlett, Stavnichuk & Komarova article
30                                         RSPCA Report
31                                      Palmer Penguins
32                               Washington Post Energy
33 Exploring Avatar: The Last Airbender transcript data
34                         Florent Lavergne infographic
35                                                 Vice
36                                    Our World in Data
37                            ceros interactive article
38                  Joshua Rosenberg's tidykids package
39                               Alex Cookson blog post
40                                  Taylor Swift lyrics
41                                      FiveThirtyEight
42                                 datasauRus R package
43                      2019 GABF Medal Winner Analysis
44                           Canada's National Observer
45                                      FiveThirtyEight
46                     Pew Research Smartphone Adoption
47                                 BlackInData #DataViz
48                                                TidyX
49                                            rabble.ca
50                                                  BBC
51                                          sasukepedia
52                                         TheEconomist


Year: 2019

   Week       Date                               Data
1     1 2019-01-01      #Rstats & #TidyTuesday Tweets
2     2 2019-01-08                    TV's Golden Age
3     3 2019-01-15                     Space Launches
4     4 2019-01-22               Incarceration Trends
5     5 2019-01-29     Dairy production & Consumption
6     6 2019-02-05 House Price Index & Mortgage Rates
7     7 2019-02-12               Federal R&D Spending
8     8 2019-02-19                   US PhD's Awarded
9     9 2019-02-26                French Train Delays
10   10 2019-03-05             Women in the Workplace
11   11 2019-03-12                        Board Games
12   12 2019-03-19     Stanford Open Policing Project
13   13 2019-03-26                  Seattle Pet Names
14   14 2019-04-02               Seattle Bike Traffic
15   15 2019-04-09        Tennis Grand Slam Champions
16   16 2019-04-16    The Economist Data Viz Mistakes
17   17 2019-04-23                         Anime Data
18   18 2019-04-30            Chicago Bird Collisions
19   19 2019-05-07   Global Student to Teacher Ratios
20   20 2019-05-14                Nobel Prize Winners
21   21 2019-05-21               Global Plastic Waste
22   22 2019-05-28                       Wine Ratings
23   23 2019-06-04                      Ramen Ratings
24   24 2019-06-11                         Meteorites
25   25 2019-06-18              Christmas Bird Counts
26   26 2019-06-25               Global UFO Sightings
27   27 2019-07-02           Media Franchise Revenues
28   28 2019-07-09                  Women's World Cup
29   29 2019-07-16                    R4DS Membership
30   30 2019-07-23                   Wildlife Strikes
31   31 2019-07-30                        Video Games
32   32 2019-08-06                 Bob Ross paintings
33   33 2019-08-13                     Roman Emperors
34   34 2019-08-20                 Nuclear Explosions
35   35 2019-08-27               Simpsons Guest Stars
36   36 2019-09-03                        Moore's Law
37   37 2019-09-10            Amusement Park Injuries
38   38 2019-09-17               National Park Visits
39   39 2019-09-24                   School Diversity
40   40 2019-10-01                      All the Pizza
41   41 2019-10-08                       Powerlifting
42   42 2019-10-15                   Car Fuel Economy
43   43 2019-10-22               Horror movie ratings
44   44 2019-10-29                NYC Squirrel Census
45   45 2019-11-05               Bike & Walk Commutes
46   46 2019-11-12                          CRAN Code
47   47 2019-11-19                NZ Bird of the Year
48   48 2019-11-26                  Student Loan Debt
49   49 2019-12-03             Philly Parking Tickets
50   50 2019-12-10             Replicating plots in R
51   51 2019-12-17                     Adoptable dogs
52   52 2019-12-24                    Christmas Songs
                                                     Source
1                                                    rtweet
2                                                      IMDb
3                               JSR Launch Vehicle Database
4                                            Vera Institute
5                                                      USDA
6                                   FreddieMac & FreddieMac
7                                                      AAAS
8                                                       NSF
9                                                      SNCF
10                          Census Bureau & Bureau of Labor
11                                         Board Game Geeks
12   Stanford Open Policing Project SOPP - arXiv:1706.05678
13                                              seattle.gov
14                                              seattle.gov
15                                                Wikipedia
16                                            The Economist
17                                              MyAnimeList
18                                       Winger et al, 2019
19                                                   UNESCO
20                                                   Kaggle
21                                        Our World In Data
22                                                   Kaggle
23                                        TheRamenRater.com
24                                                     NASA
25                                      Bird Studies Canada
26                                                   NUFORC
27                                                Wikipedia
28                                               data.world
29                                               R4DS Slack
30                                                      FAA
31                                                Steam Spy
32                                          FiveThirtyEight
33                                   Wikipedia / Zonination
34                                                    SIPRI
35                                                Wikipedia
36                                                Wikipedia
37                                  Data.world & Saferparks
38                                               Data.world
39                                                     NCES
40 Jared Lander & Ludmila Janda, Tyler Richards, DataFiniti
41                                     OpenPowerlifting.org
42                                                      EPA
43                                                     IMDB
44                                          Squirrel Census
45                                                      ACS
46                                                     CRAN
47                          New Zealand Forest and Bird Org
48                                  Department of Education
49                                         Open Data Philly
50                                        Simply Statistics
51                                                Petfinder
52                                        Billboard Top 100
                                 Article
1                     stackoverflow.blog
2                          The Economist
3                          The Economist
4                         Vera Institute
5                                    NPR
6                                Fortune
7                         New York Times
8                           #epibookclub
9                            RTL - Today
10                         Census Bureau
11                       fivethirtyeight
12               SOPP - arXiv:1706.05678
13                        Curbed Seattle
14                         Seattle Times
15                       Financial Times
16                         The Economist
17                           MyAnimeList
18                    Winger et al, 2019
19           Center for Public Education
20                         The Economist
21                     Our World in Data
22                                Vivino
23                         Food Republic
24          The Guardian - Meteorite map
25         Hamilton Christmas Bird Count
26                         Example Plots
27           reddit/dataisbeautiful post
28                             Wikipedia
29                R4DS useR Presentation
30                                   FAA
31                             Liza Wood
32                       FiveThirtyEight
33          reddit.com/r/dataisbeautiful
34                     Our World in Data
35                             Wikipedia
36                             Wikipedia
37                            Saferparks
38               fivethirtyeight article
39               Washington Post article
40                 Tyler Richards on TWD
41                         Elias Oziolor
42                          Ellis Hughes
43                       Stephen Follows
44                               CityLab
45                                   ACS
46                    Phillip Massicotte
47 Dragonfly Data Science & Nathan Moore
48                      Dignity and Debt
49                      NBC Philadelphia
50                       Rafael Irizarry
51                           The Pudding
52                        A Dash of Data


Year: 2018

   Week       Date                                                  Data
1     1 2018-04-02                                      US Tuition Costs
2     2 2018-04-09                               NFL Positional Salaries
3     3 2018-04-16                                      Global Mortality
4     4 2018-04-23                         Australian Salaries by Gender
5     5 2018-04-30                                ACS Census Data (2015)
6     6 2018-05-07                                  Global Coffee Chains
7     7 2018-05-14                                      Star Wars Survey
8     8 2018-05-21                                   US Honey Production
9     9 2018-05-29                                 Comic book characters
10   10 2018-06-05                                    Biketown Bikeshare
11   11 2018-06-12                               FIFA World Cup Audience
12   12 2018-06-19                              Hurricanes & Puerto Rico
13   13 2018-06-26                                   Alcohol Consumption
14   14 2018-07-03                                Global Life Expectancy
15   15 2018-07-10                                        Craft Beer USA
16   16 2018-07-17                                          Exercise USA
17   17 2018-07-23                            p-hack-athon collaboration
18   18 2018-07-31                          Dallas Animal Shelter FY2017
19   19 2018-08-07                                        Airline Safety
20   20 2018-08-14                                  Russian Troll Tweets
21   21 2018-08-21                                      California Fires
22   22 2018-08-28                                             NFL Stats
23   23 2018-09-04                                    Fast Food Calories
24   24 2018-09-11                                    Cats vs Dogs (USA)
25   25 2018-09-18                                 US Flights or Hypoxia
26   26 2018-09-25                               Global Invasive Species
27   27 2018-10-02                                             US Births
28   28 2018-10-09                                      US Voter Turnout
29   29 2018-10-16                                College Major & Income
30   30 2018-10-23                                   Horror Movie Profit
31   31 2018-10-30                             R and R package downloads
32   32 2018-11-06                                US Wind Farm locations
33   33 2018-11-13                                          Malaria Data
34   34 2018-11-20 Thanksgiving Dinner or Transgender Day of Remembrance
35   35 2018-11-27                                     Baltimore Bridges
36   36 2018-12-04                               Medium Article Metadata
37   37 2018-12-11                            NYC Restaurant inspections
38   38 2018-12-18                                        Cetaceans Data
                                                                                   Source
1                                                                       onlinembapage.com
2                                                                             Spotrac.com
3                                                                      ourworldindata.org
4                                                                             data.gov.au
5                                                                     census.gov , Kaggle
6  Starbucks: kaggle.com , Tim Horton: timhortons.com , Dunkin Donuts: odditysoftware.com
7                                                                 fivethirtyeight package
8                                                                        USDA, Kaggle.com
9                                                                 FiveThirtyEight package
10                                                                            BiketownPDX
11                                                                FiveThirtyEight package
12                                                                FiveThirtyEight package
13                                                                FiveThirtyEight package
14                                                                     ourworldindata.org
15                                                                             data.world
16                                                                                    CDC
17                                                                   simplystatistics.org
18                                                                        Dallas OpenData
19                                                                FiveThirtyEight Package
20                                                                    FiveThirtyEight.com
21                                                                           BuzzFeed.com
22                                                             pro-football-reference.com
23                                                                  fastfoodnutrition.org
24                                                                             data.world
25                                                      faa.govSoaring Society of America
26                                                             Paini et al, 2016griis.org
27                                                                fivethirtyeight package
28                                                                             data.world
29                                                                    fivethirtyeight/ACS
30                                                                        the-numbers.com
31                                                                  cran-logs.rstudio.com
32                                                                               usgs.gov
33                                               ourworldindata.orgMalaria Data Challenge
34                                                                    fivethirtyeightTDoR
35                                                         Federal Highway Administration
36                                                                             Kaggle.com
37                                                     NYC OpenData/NYC Health Department
38                                                                            The Pudding
                                       Article
1                            onlinembapage.com
2                          fivethirtyeight.com
3                           ourworldindata.org
4                                  data.gov.au
5                                   No article
6                              flowingdata.com
7                          fivethirtyeight.com
8                                  Bee Culture
9                          FiveThirtyEight.com
10               Biketown cascadiaRconf/cRaggy
11                         FiveThirtyEight.com
12                         FiveThirtyEight.com
13                         FiveThirtyEight.com
14                          ourworldindata.org
15                               thrillist.com
16    CDC - National Health Statistics Reports
17                                p-hack-athon
18              Dallas OpenData FY2017 Summary
19                        538 - Airline Safety
20                  538 - Russian Troll Tweets
21 BuzzFeed News - California Fires, RMarkdown
22                                     eldo.co
23                  franchiseopportunities.com
24                             Washington Post
25               travelweekly.comSSA - Hypoxia
26                  Paini et al, 2016griis.org
27                                538 - Births
28                                Star Tribune
29                             fivethirtyeight
30                             fivethirtyeight
31                                  No Article
32                         Wind Market Reports
33             ourworldindata.org malariaAtlas
34                         fivethirtyeightTDoR
35                               Baltimore Sun
36                            TidyText package
37                             FiveThirtyEight
38                                 The Pudding
tt_datasets(2021)
   Week       Date                           Data                      Source
1     1 2020-12-29 Bring your own data from 2020!                            
2     2 2021-01-05           Transit Cost Project            TransitCosts.com
3     3 2021-01-12                Art Collections             Tate Collection
4     4 2021-01-19                   Kenya Census                rKenyaCensus
5     5 2021-01-26              Plastic Pollution     Break Free from Plastic
6     6 2021-02-02                HBCU Enrollment     Data.World & Data.World
7     7 2021-02-09              Wealth and Income Urban Institute & US Census
8     8 2021-02-16       W.E.B. Du Bois Challenge      Du Bois Data Challenge
9     9 2021-02-23        Employment and Earnings                         BLS
10   10 2021-03-02                  SuperBowl Ads             FiveThirtyEight
11   11 2021-03-09                   Bechdel Test             FiveThirtyEight
12   12 2021-03-16           Video Games + Sliced                       Steam
13   13 2021-03-23                       UN Votes           Harvard Dataverse
14   14 2021-03-30                  Makeup Shades            The Pudding data
                                                Article
1                                                      
2                              Transit Costs Case Study
3                 Aspect Ratio of Artworks through Time
4                              Introducing rKenyaCensus
5                                           Sarah Sauve
6                                HBCU Donations Article
7                                       Urban Institute
8  Anthony Starks - Recreating Du Bois's data portraits
9                                           BLS Article
10                                      FiveThirtyEight
11                                      FiveThirtyEight
12                                          SteamCharts
13                                 Citizen Statistician
14                                          The Pudding
colnames(tuesdata$coffee_ratings)
  1. total_cup_points’
  2. species’
  3. owner’
  4. country_of_origin’
  5. farm_name’
  6. lot_number’
  7. mill’
  8. ico_number’
  9. company’
  10. altitude’
  11. region’
  12. producer’
  13. number_of_bags’
  14. bag_weight’
  15. in_country_partner’
  16. harvest_year’
  17. grading_date’
  18. owner_1’
  19. variety’
  20. processing_method’
  21. aroma’
  22. flavor’
  23. aftertaste’
  24. acidity’
  25. body’
  26. balance’
  27. uniformity’
  28. clean_cup’
  29. sweetness’
  30. cupper_points’
  31. moisture’
  32. category_one_defects’
  33. quakers’
  34. color’
  35. category_two_defects’
  36. expiration’
  37. certification_body’
  38. certification_address’
  39. certification_contact’
  40. unit_of_measurement’
  41. altitude_low_meters’
  42. altitude_high_meters’
  43. altitude_mean_meters’
head(tuesdata$coffee_ratings)
A tibble: 6 43
total_cup_pointsspeciesownercountry_of_originfarm_namelot_numbermillico_numbercompanyaltitudecolorcategory_two_defectsexpirationcertification_bodycertification_addresscertification_contactunit_of_measurementaltitude_low_metersaltitude_high_metersaltitude_mean_meters
<dbl><chr><chr><chr><chr><chr><chr><chr><chr><chr><chr><dbl><chr><chr><chr><chr><chr><dbl><dbl><dbl>
90.58Arabicametad plc Ethiopia metad plc NAmetad plc2014/2015metad agricultural developmet plc 1950-2200 Green 0April 3rd, 2016 METAD Agricultural Development plc309fcf77415a3661ae83e027f7e5f05dad786e4419fef5a731de2db57d16da10287413f5f99bc2ddm195022002075
89.92Arabicametad plc Ethiopia metad plc NAmetad plc2014/2015metad agricultural developmet plc 1950-2200 Green 1April 3rd, 2016 METAD Agricultural Development plc309fcf77415a3661ae83e027f7e5f05dad786e4419fef5a731de2db57d16da10287413f5f99bc2ddm195022002075
89.75Arabicagrounds for health adminGuatemalasan marcos barrancas “san cristobal cuchNANA NA NA 1600 - 1800 mNA 0May 31st, 2011 Specialty Coffee Association 36d0d00a3724338ba7937c52a378d085f2172daa0878a7d4b9d35ddbf0fe2ce69a2062cceb45a660m160018001700
89.00Arabicayidnekachew dabessa Ethiopia yidnekachew dabessa coffee plantation NAwolensu NA yidnekachew debessa coffee plantation1800-2200 Green 2March 25th, 2016 METAD Agricultural Development plc309fcf77415a3661ae83e027f7e5f05dad786e4419fef5a731de2db57d16da10287413f5f99bc2ddm180022002000
88.83Arabicametad plc Ethiopia metad plc NAmetad plc2014/2015metad agricultural developmet plc 1950-2200 Green 2April 3rd, 2016 METAD Agricultural Development plc309fcf77415a3661ae83e027f7e5f05dad786e4419fef5a731de2db57d16da10287413f5f99bc2ddm195022002075
88.83Arabicaji-ae ahn Brazil NA NANA NA NA NA Bluish-Green1September 3rd, 2014Specialty Coffee Institute of Asia726e4891cf2c9a4848768bd34b668124d12c4224b70da261fcc84831e3e9620c30a8701540abc200m NA NA NA
tuesdata$coffee_ratings %>% select(c("country_of_origin", "total_cup_points")) %>% 
    group_by(country_of_origin) %>% 
    summarise(mu_points = mean(total_cup_points), count = n()) %>% 
    arrange(desc(mu_points))
A tibble: 37 3
country_of_originmu_pointscount
<chr><dbl><int>
Papua New Guinea 85.75000 1
Ethiopia 85.48409 44
Japan 84.67000 1
United States 84.43300 10
Kenya 84.30960 25
Panama 83.70750 4
Uganda 83.45194 36
Colombia 83.10656183
El Salvador 83.05286 21
China 82.92750 16
Rwanda 82.83000 1
Costa Rica 82.78902 51
Thailand 82.57375 32
Indonesia 82.56550 20
Peru 82.52600 10
Brazil 82.40591132
Tanzania, United Republic Of82.36950 40
Taiwan 82.00133 75
Zambia 81.92000 1
Guatemala 81.84657181
Laos 81.83333 3
Burundi 81.83000 2
United States (Hawaii) 81.82041 73
United States (Puerto Rico) 81.72750 4
Malawi 81.71182 11
Vietnam 81.20875 8
India 81.08286 14
Mexico 80.89008236
Philippines 80.83400 5
Myanmar 80.75000 8
Mauritius 80.50000 1
Nicaragua 80.45808 26
Ecuador 80.22000 3
Honduras 79.35755 53
Cote d?Ivoire 79.33000 1
NA 79.08000 1
Haiti 77.18000 6
tuesdata$coffee_ratings %>% select(country_of_origin) %>% table()
.
                      Brazil                      Burundi 
                         132                            2 
                       China                     Colombia 
                          16                          183 
                  Costa Rica                Cote d?Ivoire 
                          51                            1 
                     Ecuador                  El Salvador 
                           3                           21 
                    Ethiopia                    Guatemala 
                          44                          181 
                       Haiti                     Honduras 
                           6                           53 
                       India                    Indonesia 
                          14                           20 
                       Japan                        Kenya 
                           1                           25 
                        Laos                       Malawi 
                           3                           11 
                   Mauritius                       Mexico 
                           1                          236 
                     Myanmar                    Nicaragua 
                           8                           26 
                      Panama             Papua New Guinea 
                           4                            1 
                        Peru                  Philippines 
                          10                            5 
                      Rwanda                       Taiwan 
                           1                           75 
Tanzania, United Republic Of                     Thailand 
                          40                           32 
                      Uganda                United States 
                          36                           10 
      United States (Hawaii)  United States (Puerto Rico) 
                          73                            4 
                     Vietnam                       Zambia 
                           8                            1
tuesdata$coffee_ratings %>% select(c("altitude_mean_meters", "total_cup_points")) %>% plot()

png


- Jason Wang